Publikationen

Entnehmen Sie die Publikationen der Jahre 2017 und 2016 von Mitarbeitenden der RMS Foundation der folgenden Liste

2017

Facile synthesis of magnetically separable CoFe2O4/Ag2O/Ag2CO3 nanoheterostructures with high photocatalytic performance under visible light and enhanced stability against photodegradation

A. Sutka, N. Doebelin, U. Joost, K. Smits, V. Kisand, M. Maiorov, K. Kooser, M. Kook, R. F. Duarte, T. Käämbre

We have developed magnetically separable and reasonably stable visible light active photocatalysts containing CoFe2O4 and mixture of Ag2O/Ag2CO3 nanoheterostructures. Obtained ternary nanoheterostructures outperform previously reported magnetically separable visible light photocatalysts, showing one of the highest visible light photocatalytic dye degradation activities in water by a magnetically separable photocatalyst. Photocatalytically active part is Ag2O/Ag2CO3 whereas the CoFe2O4 mainly has stabilizing and magnetic separation functions. The Ag2CO3 phase junction on Ag2O nanoparticle surface were obtained by straightforward phase transformation from silver oxide to silver carbonate in air due to ambient CO2. The phase transformation was followed using X-ray diffraction (XRD), and hard X-ray photoelectron spectroscopy (HAXPES) measurements.

Journal of Environmental Chemical Engineering, 5(4), pp 3455-3462, 2017, DOI: 10.1016/j.jece.2017.07.009

Particles and Ions Generated in Total Hip Joint Prostheses: In Vitro Wear Test Results of UHMWPE and XLPE Acetabular Components

H. Zohdi, B. Andreatta, R. Heuberger

The accurate and detailed characterization of wear particles and ions released from total hip joint prostheses is essential to understand the cause and development of osteolysis, aseptic loosening and hypersensitivity. In this in vitro research, the wear particles and ion release of 22 different test liquids from hip simulator studies were investigated. Wear particles generated from acetabular components made of ultra-high-molecular-weight polyethylene (UHMWPE) or cross-linked polyethylene containing vitamin E (XLPE) were compared using scanning electron microscopy (SEM) and laser diffraction. Additionally, the effect of running-in versus steady-state, accelerated ageing, head materials and calcium sulphate third-body particles on the morphology and size of the created debris was investigated. The Fe, Ni, Mn, Nb, Co, Mo and Al ions released from femoral heads made of stainless steel, CoCrMo and alumina ceramic were analysed using inductively coupled plasma mass spectrometry. The combination of SEM and laser diffraction to analyse both the morphology and the particle-size distributions of the polyethylene wear particles was very powerful. The wear particles were predominantly in the submicron range and globular, with occasional fibrils. The size distributions of the UHMWPE and XLPE particles were similar; however, more fibrils were observed among the UHMWPE particles. The average particle size decreased for most samples in the steady-state phase compared to the running-in. The accelerated ageing and the presence of third-body particles generally caused larger UHMWPE wear particles only. Increasing the size of the stainless steel femoral heads led to an increase in the ion level too.

Tribol Lett  (2017) 65:92; DOI: 10.1007/s11249-017-0872-2

Characterization and distribution of mechanically competent mineralized tissue in micropores of β-tricalcium phosphate bone substitutes

M. Bohner, G. Baroud, A. Bernstein, N. Döbelin, L. Galea, B. Hesse, R. Heuberger, S. Meille, P. Michel, B. von Rechenberg, J. Sague, H. Seeherman

Although bone formation around and within implants has been intensively studied, the role of pores and pore geometry is still debated. Notwithstanding studies reporting the formation of bone and bone components within pores as small as a few micrometers (‘micropores’), bone ingrowth is believed to only occur in pores larger than 100 μm (‘macropores’). A thorough analysis of 10 different porous β-tricalcium phosphate cylinders (Ø: 8 mm; L: 13 mm) implanted for 2–24 weeks in an ovine model demonstrates ingrowth of mineralized tissue (MT) in pores as small as 1 μm. This tissue contained calcium phosphate, collagen, and interconnected cells. It formed within the first 3–4 weeks of implantation, extended over several hundred micrometers within the ceramic, and contributed to the majority of the early MT formation (including bone) in the defect. The indentation stiffness of the MT-ceramic composite was significantly higher than that of bone and MT-free ceramic. The presented results substantiate the importance of micropores for optimal bone healing, particularly at early implantation times.

Materals Today, Vol. 20, Issue 3, April 2017, Pages 106-115; DOI: 10.1016/j.mattod.2017.02.002

A novel method for segmentation and aligning the pre- and post-implantation scaffolds of resorbable calcium phosphate bone substitutes

A. Sweedy, M. Bohner, G. H. van Lenthe, G. Baroud

Micro-computed tomography (microCT) is commonly used to characterize the three-dimensional structure of bone graft scaffolds before and after implantation in order to assess changes occurring during implantation. The accurate processing of the microCT datasets of explanted β-tricalcium phosphate (β-TCP) scaffolds poses significant challenges because of (a) the overlap in the grey values distribution of ceramic remnants, bone, and soft tissue, and of (b) the resorption of the bone substitute during the implantation. To address those challenges, this article introduces and rigorously validates a new processing technique to accurately distinguish these three phases found in the explanted β-TCP scaffolds. Specifically, the microCT datasets obtained before and after implantation of β-TCP scaffolds were aligned in 3D, and the characteristic grey value distributions of the three phases were extracted, thus allowing for (i) the accurate differentiation between these three phases (ceramic remnants, bone, soft tissue), and additionally for (ii) the localization of the defect site in the post-implantation microCT dataset. Using the similarity matrix, a 94±1% agreement was found between algorithmic results and the visual assessment of 556,800 pixels. Moreover, the comparison of the segmentation results of the same microCT and histology section further confirmed the validity of the present segmentation algorithm. This new technique could lead to a more common use of microCT in analyzing the complex 3D processes and to a better understanding of the biological processes occurring after the implantation of ceramic bone graft substitutes.

STATEMENT OF SIGNIFICANCE:

Calcium-phosphate scaffolds are being increasingly used to repair critical bone defects. Methods for the accurate characterization of the repair process are still lacking. The present study introduced and validated a novel image-processing technique, using micro-computed tomography (mCT) datasets, to investigate material phases present in biopsies. Specifically, the new method combined mCT datasets from the scaffold before and after implantation to access the characteristic data of the ceramic for more accurate analysis of bone biopsies, and as such to better understand the interactions of the scaffold design and the bone repair process.

Acta Biomaterialia, May 2017; 54:441-453; DOI: 10.1016/j.actbio.2017.03.001

Effect of sex-hormone levels, sex, body mass index and other host factors on human craniofacial bone regeneration with bioactive tricalcium phosphate grafts

C. Knabe, A. Mele, P. H. Kann, B. Peleska, D. Adel-Khattab, H. Renz, A. Reuss, M. Bohner, M. Stiller

Little is known regarding the associations between sex-hormone levels, sex, body mass index (BMI), age, other host factors and biomaterial stimulated bone regeneration in the human craniofacial skeleton. The aim of this study was to elucidate the associations between these factors and bone formation after sinus floor augmentation procedures (SFA) utilizing a bioactive tricalcium phosphate (TCP) bone grafting material. We conducted a prospective study in a human population in which 60 male and 60 female participants underwent SFA and dental implant placement using a staged approach. BMI as well as levels of serum estradiol (E2), total testosterone (TT), and the free androgen index (FAI) were measured by radioimmunoassay and electrochemoluminescent-immunoassay. At implant placement, 6 months after SFA, bone biopsy specimens were harvested for hard tissue histology, the amount of bone formation was evaluated by histomorphometry and immunohistochemical analysis of osteogenic marker expression. The Wilcoxon rank-sum U test, Spearman correlations and linear regression analysis were used to explore the association between bone formation and BMI, hormonal and other host factors. BMI and log E2 were significantly positively associated with bone formation in male individuals (p < 0.05). Histomorphometry revealed trends toward greater bone formation and osteogenic marker expression with non-smokers compared to smokers. In male patients, higher E2 levels and higher BMI enhanced TCP stimulated craniofacial i.e. intramembranous bone repair.

Biomaterials, pp 123:48-62, 2017; DOI: 10.1016/j.biomaterials.2017.01.035

Composite material consisting of microporous β-TCP ceramic and alginate for delayed release of antibiotics

M. Seidenstuecker, J. Ruehe, N. P. Suedkamp, A. Serr, A. Wittmer, M. Bohner, A. Bernstein, H. O. Mayr

Objective

The aim of this study was to produce a novel composite of microporous β-TCP filled with alginate and Vancomycin (VAN) to prolong the release behavior of the antibiotic for up to 28 days.

Material and methods

Using the flow chamber developed by the group, porous ceramics in a directional flow were filled with alginates of different composition containing 50 mg/mL of antibiotics. After cross-linking the alginate with calcium ions, incubation took place in 10 mL double-distilled water for 4 weeks at 37 °C. At defined times (1, 2, 3, 6, 9, 14, 20 and 28 days), the liquid was completely exchanged and analyzed by capillary zone electrophoresis and microtiter trials. For statistical purposes, the mean and standard deviation were calculated and analyzed by ANOVA.

Results

The release of VAN from alginate was carried out via an external calcium source over the entire period with concentrations above the minimal inhibitory concentration (MIC). The burst release measured 35.2 ± 1.5%. The release of VAN from alginate with an internal calcium source could only be observed over 14 days. The burst release here was 61.9 ± 4.3%. The native alginate’s burst release was 54.1 ± 7.8%; that of the sterile alginate 40.5 ± 6.4%. The microtiter experiments revealed efficacy over the entire study period for VAN. The MIC value was determined in the release experiments as well in a range of 0.5–2.0 μg/mL against Staphylococcus aureus.

Statement of Significance

Drug release systems based on β-TCP and hydrogels are well documented in literature. However, in all described systems the ceramic, as granule or powder, is inserted into a hydrogel. In our work, we do the opposite, a hydrogel which acts as reservoir for antibiotics is placed into a porous biodegradable ceramic. Eventually, this system should be applied as treatment of bone infections. Contrary to the “granule in hydrogel” composites it has the advantage of mechanical stability. Thus, it can take over functions of the bone during the healing process. For a quicker translation from our scientific research into clinical use, only FDA approved materials were used in this work.

Acta Biomaterialia pp 51:433-46, 2017; DOI: 10.1016/j.actbio.2017.01.045

Low metallic wear of dynamic intraligamentary stabilization

Ch. May, B. Gueorguiev, R. Heuberger, J. Sague, Ch. Gross, Ph. Henle, D. Delfosse, J. Häberli

Abstract Dynamic Intraligamentary Stabilization (DIS) represents a treatment option for acute anterior cruciate ligament ruptures. The device used for DIS consists of a polyethylene braid and a metallic spring system, allowing the remnants of the ligament to recombine in a stabilized position over the self-healing period. This work addresses the metallic wear generated thereby. A cadaveric study was carried out with n=8 knees over 50'000 cycles, along with a control group to validate the cleaning and assembly process. Gravimetric analysis yielded a total wear of (0.28±0.35)mg for the entire implant. 50% of the wear originated from the bush and 46% from the clamping element. In a worst case scenario, a total wear of 1.7 mg would result during the functional lifetime.

Tribology International, Volume 109, May 2017, Pages 217-221; DOI: 10.1016/j.triboint.2016.12.041

Surrogate Outcome Measures of In Vitro Osteoclast Resorption of β Tricalcium Phosphate

S. A. Clarke, J. Martin, J. Nelson, J. -C. Hornez, M. Bohner, N. Dunne, F. Buchanan

Introduction of porosity to calcium phosphate scaffolds for bone repair has created a new challenge when measuring bioresorption in vitro, rendering traditional outcome measures redundant. The aim of this study is to identify a surrogate endpoint for use with 3D scaffolds. Murine RAW 264.7 cells are cultured on dense discs of β-tricalcium phosphate in conditions to stimulate osteoclast (OC) formation. Multinucleated OCs are visible from day 6 with increases at days 8 and 10. Resorption pits are first observed at day 6 with much larger pits visible at days 8, 10, and 12. The concentration of calcium ions in the presence of cells is significantly higher than cell-free cultures at days 3 and 9. Using linear regression analysis, Ca ion release could account for 35.9% of any subsequent change in resorption area. The results suggest that Ca ion release is suitable to measure resorption of a beta-tricalcium phosphate ceramic substrate in vitro. This model could replace the more accepted resorption pit assay in circumstances where quantification of pits is not possible, e.g., when characterizing 3D tissue engineered bone scaffolds.

Advanced Healthcare Materials Volume 6, Issue 1 January 11, 2017;1600947,  DOI: 10.1002/adhm.201600947

2016

Hydrogen-substituted β-tricalcium phosphate synthesized in organic media

Ch. Stähli, J. Thüring, L. Galea, S. Tadier, M. Bohner, N. Döbelin

β-Tricalcium phosphate (β-TCP) platelets synthesized in ethylene glycol offer interesting geometries for nano-structured composite bone substitutes but were never crystallographically analyzed. In this study, powder X-ray diffraction and Rietveld refinement revealed a discrepancy between the platelet structure and the known β-TCP crystal model. In contrast, a model featuring partial H for Ca substitution and the inversion of P1O4 tetrahedra, adopted from the whitlockite structure, allowed for a refinement with minimal misfits and was corroborated by HPO42− absorptions in Fourier-transform IR spectra. The Ca/P ratio converged to 1.443 ± 0.003 (n = 36), independently of synthesis conditions. As a quantitative verification, the platelets were thermally decomposed into hydrogen-free β-TCP and β-calcium pyrophosphate which resulted in a global Ca/P ratio in close agreement with the initial β-TCP Ca/P ratio (ΔCa/P = 0.003) and with the chemical composition measured by inductively coupled plasma (ΔCa/P = 0.003). These findings thus describe for the first time a hydrogen-substituted β-TCP structure, i.e. a Mg-free whitlockite, represented by the formula Ca21 − x(HPO4)2x(PO4)14 − 2x, where x = 0.80 ± 0.04, and may have implications for resorption properties of bone regenerative materials.

Acta Crystallographica Section B B72:875-884, 2016; DOI: 10.1107/S2052520616015675

Effect of cobalt doping on the mechanical properties of ZnO nanowires

M. Vahtrus, A. Šutka, B. Polyakov, S. Oras, M. Antsov, N. Döbelin, R. Lohmus, E. Nõmmiste, S. Vlassov

In this work, we investigate the influence of doping on the mechanical properties of ZnO nanowires (NWs) by comparing the mechanical properties of pure and Co-doped ZnO NWs grown in similar conditions and having the same crystallographic orientation [0001]. The mechanical characterization included three-point bending tests made with atomic force microscopy and cantilever beam bending tests performed inside scanning electron microscopy. It was found that the Young's modulus of ZnO NWs containing 5% of Co was approximately a third lower than that of the pure ZnO NWs. Bending strength values were comparable for both materials and in both cases were close to theoretical strength indicating high quality of NWs. Dependence of mechanical properties on NW diameter was found for both doped and undoped ZnO NWs.

Materials Characterization 121, pp. 40-47, 2016; DOI: 10.1016/j.matchar.2016.09.027

Effect of niobium onto the tribological behavior of cathodic arc deposited Nb–Ti–N coatings

D. D. La Grange, N. Goebbels, A. Santana, R. Heuberger, T. Imwinkelried, L. Eschbach, A. Karimi

This investigation addresses a need for higher quality surfaces and wear resistance of coatings used on load bearing medical implants. Multilayered cathodic arc deposited coatings are candidates for such applications and were the subject of this study. Nb–Ti–N coatings were deposited by cathodic arc using TiNb compound cathodes. The microstructure and properties of the coatings were characterized using XRD, TEM/STEM, EDS, nanoindentation, scratch tests and pin-on-disc testing. Throughout the coating, macroparticles consisting of a Nb rich core and a nitrided titanium porous shell were evidenced by STEM and EDS. It was shown that inhomogeneities related with the soft and malleable metallic Nb inclusions alter the tribological behavior of the coatings. The underlying mechanism of wear in hip-simulator test liquid against UHMWPE was investigated. During pin-on-disc tests, the top layers of the coatings were removed and the embedded niobium droplets became visible. The wear of UHMWPE during pin-on-disks tests was increased on Nb–Ti–N counter surfaces compared to the wear of UHMWPE on TiN itself. It is inferred that the wear of the coatings is initiated by the growth discontinuities and pores around the Nb droplets. The debris released from the coating acts as third body wear particles, grinds the remaining coating and causes the wear of UHMWPE pins.

Wear Vol. 368-369, pp 60-69, 2016; DOI: 10.1016/j.wear.2016.09.003

Innovating in the Medical Device Industry - Challenges & Opportunities. ESB 2015 Translational Research Symposium

Y. Bayon, M. Bohner, D. Eglin, P. Procter, R. G. Richards, J. Weber, D. I. Zeugolis

The European Society for Biomaterials 2015 Translational Research Symposium focused on 'Innovating in the Medical Device Industry - Challenges & Opportunities' from different perspectives, i.e., from a non-profit research organisation to a syndicate of small and medium-sized companies and large companies. Lecturers from regulatory consultants, industry and research institutions described the innovation process and regulatory processes (e.g., 510K, PMA, combination product) towards market approval. The aim of the present article is to summarise and explain the main statements made during the symposium, in terms of challenges and opportunities for medical device industries, in a constantly changing customer and regulatory environment.

J Mater Sci Mater Med 27, pp. 144, 2016; DOI: 10.1007/s10856-016-5759-5

Controlled release of NELL-1 protein from chitosan-modified ATCP particles

Y. Zhang, R. Dong, Y. Park, M. Bohner, X. Zhang, K. Ting, C. Soo, B. M. Wu

NEL-like molecule-1 (NELL-1) is a novel osteogenic protein that showing high specificity to osteochondral cells. It was widely used in bone regeneration research by loading onto carriers such as tricalcium phosphate (TCP) particles. However, there has been little research on protein controlled release from this material and its potential application. In this study, TCP was first modified with a hydroxyapatite coating followed by a chitosan coating to prepare chitosan/hydroxyapatite-coated TCP particles (Chi/HA-TCP). The preparation was characterized by SEM, EDX, FTIR, XRD, FM and Zeta potential measurements. The NELL-1 loaded Chi/HA-TCP particles and the release kinetics were investigated in vitro. It was observed that the Chi/HA-TCP particles prepared with the 0.3% (wt/wt) chitosan solution were able to successfully control the release of NELL-1 and maintain a slow, steady release for up to 28 days. Furthermore, more than 78% of the loaded protein's bioactivity was preserved in Chi/HA-TCP particles over the period of the investigation, which was significantly higher than that of the protein released from hydroxyapatite coated TCP (HA-TCP) particles. Collectively, this study suggests that the osteogenic protein NELL-1 showed a sustained release pattern after being encapsulated into the modified Chi/HA-TCP particles, and the NELL-1 integrated composite of Chi/HA-TCP showed a potential to function as a protein delivery carrier and as an improved bone matrix for use in bone regeneration research.

International Journal of Pharmaceutics 511, pp. 79-89, 2016; DOI: 10.1016/j.ijpharm.2016.06.050

In vivo degradation of a new concept of magnesium-based rivet-screws in the minipig mandibular bone

B. Schaller, N. Saulacic, S. Beck, Th. Imwinkelried, B. T. Goh, K. Nakahara, W. Hofstetter, T. Iizuka

Self-tapping of magnesium screws in hard bone may be a challenge due to the limited torsional strength of magnesium alloys in comparison with titanium. To avoid screw failure upon implantation, the new concept of a rivet-screw was applied to a WE43 magnesium alloy. Hollow cylinders with threads on the outside were expanded inside drill holes of minipig mandibles. During the expansion with a hexagonal mandrel, the threads engaged the surrounding bone and the inside of the screw transformed into a hexagonal screw drive to allow further screwing in or out of the implant. The in vivo degradation of the magnesium implants and the performance of the used coating were studied in a human standard-sized animal model. Four magnesium alloy rivet-screws were implanted in each mandible of 12 minipigs. Six animals received the plasmaelectrolytically coated magnesium alloy implants; another six received the uncoated magnesium alloy rivet-screws. Two further animals received one titanium rivet-screw each as control. In vivo radiologic examination was performed at one, four, and eight weeks. Euthanasia was performed for one group of seven animals (three animals with coated, three with uncoated magnesium alloy implants and one with titanium implant) at 12 weeks and for the remaining seven animals at 24 weeks. After euthanasia, micro-computed tomography and histological examination with histomorphometry were performed. Significantly less void formation as well as higher bone volume density (BV/TV) and bone-implant contact area (BIC) were measured around the coated implants compared to the uncoated ones. The surface coating was effective in delaying degradation despite plastic deformation. The results showed potential for further development of magnesium hollow coated screws for bone fixation.

Materials Science and Engineering C 69, pp 247-254, 2016; DOI: 10.1016/j.msec.2016.06.085

The Effects of Crystal Phase and Particle Morphology of Calcium Phosphates on Proliferation and Differentiation of Human Mesenchymal Stromal Cells

Ch. Danoux, D. Pereira, N. Döbelin, Ch. Stähli, J. Barralet, C. van Blitterswijk, P. Habibovic

Calcium phosphate (CaP) ceramics are extensively used for bone regeneration; however, their clinical performance is still considered inferior to that of patient's own bone. To improve the performance of CaP bone graft substitutes, it is important to understand the effects of their individual properties on a biological response. The aim of this study is to investigate the effects of the crystal phase and particle morphology on the behavior of human mesenchymal stromal cells (hMSCs). To study the effect of the crystal phase, brushite, monetite, and octacalcium phosphate (OCP) are produced by controlling the precipitation conditions. Brushite and monetite are produced as plate-shaped and as needle-shaped particles, to further investigate the effect of particle morphology. Proliferation of hMSCs is inhibited on OCP as compared to brushite and monetite in either morphology. Brushite needles consistently show the lowest expression of most osteogenic markers, whereas the expression on OCP is in general high. There is a trend toward a higher expression of the osteogenic markers on plate-shaped than on needle-shaped particles for both brushite and monetite. Within the limits of CaP precipitation, these data indicate the effect of both crystal phase and particle morphology of CaPs on the behavior of hMSCs.

Advanced Healthcare Materials 5(14), pp. 1775-1785, 2016; DOI: 10.1002/adhm.201600184

Full-field Calcium K-Edge X-ray Absorption Near-Edge Spectroscopy on Cortical Bone at the Micron-Scale: Polarization Effects Reveal Mineral Orientation

B. Hesse, M. Salome, H. Castillo-Michel, M. Cotte, B. Fayard, Ch. Sahle, W. De Nolf, J. Hradilova, A. Masic, B. Kanngiesser, M. Bohner, P. Varga, K. Raum, S. Schrof

Here, we show results on X-ray absorption near edge structure spectroscopy in both transmission and X-ray fluorescence full-field mode (FF-XANES) at the calcium K-edge on human bone tissue in healthy and diseased conditions and for different tissue maturation stages. We observe that the dominating spectral differences originating from different tissue regions, which are well pronounced in the white line and postedge structures are associated with polarization effects. These polarization effects dominate the spectral variance and must be well understood and modeled before analyzing the very subtle spectral variations related to the bone tissue variations itself. However, these modulations in the fine structure of the spectra can potentially be of high interest to quantify orientations of the apatite crystals in highly structured tissue matrices such as bone. Due to the extremely short wavelengths of X-rays, FF-XANES overcomes the limited spatial resolution of other optical and spectroscopic techniques exploiting visible light. Since the field of view in FF-XANES is rather large the acquisition times for analyzing the same region are short compared to, for example, X-ray diffraction techniques. Our results on the angular absorption dependence were verified by both site-matched polarized Raman spectroscopy, which has been shown to be sensitive to the orientation of bone building blocks and by mathematical simulations of the angular absorbance dependence. As an outlook we further demonstrate the polarization based assessment of calcium-containing crystal orientation and specification of calcium in a beta-tricalcium phosphate (β-Ca3(PO4)2 scaffold implanted into ovine bone. Regarding the use of XANES to assess chemical properties of Ca in human bone tissue our data suggest that neither the anatomical site (tibia vs jaw) nor pathology (healthy vs necrotic jaw bone tissue) affected the averaged spectral shape of the XANES spectra.

Analytical Chemistry 88(7), pp. 3826–3835, 2016; DOI: 10.1021/acs.analchem.5b04898

Ag sensitized TiO2 and NiFe2O4 three-component nanoheterostructures: Synthesis, electronic structure and strongly enhanced visible light photocatalytic activity

A. Šutka, T. Käämbre, R. Pärna, N. Döbelin, M. Vanags, K. Smits, V. Kisand

This study reports on the synthesis and characterisation of two- and three-component visible light active photocatalytic nanoparticle heterostructures, based on TiO2 and NiFe204 and sensitized with Ag. We observe that a Ag content as small as 1 at% in the TiO2/NiFe204 heterostructure increases by more than an order of magnitude the rate constant for the visible light photocatalytic process. We rationalise this in terms of the measured structure and electronic structure data of the binary and ternary combinations of the component materials and focus on details, which show that an optimised deposition sequence is vital for attaining high values of photocatalytic efficiency, because the charge transfer across the interfaces appears to be sensitive to where the Ag is loaded in the heterostructure. The overall higher visible light photocatalytic activity of the TiO2/Ag/NiFe204 heterostructure was observed and is attributed to enhanced charge carrier separation efficiency and migration via vectorial electron transfer.

RSC Advances 6(23):18834-18842, 2016; DOI: 10.1039/C6RA00728G

In vivo degradation of magnesium plate/screw osteosynthesis implant systems: Soft and hard tissue response in a calvarial model in miniature pigs

B. Schaller, N. Saulacic, Th. Imwinkelried, S. Beck, E. W. Y. Liu, J. Gralla, K. Nakahara, W. Hofstetter, T. Iizuka

Biodegradable magnesium plate/screw osteosynthesis systems were implanted on the frontal bone of adult miniature pigs. The chosen implant geometries were based on existing titanium systems used for the treatment of facial fractures. The aim of this study was to evaluate the in vivo degradation and tissue response of the magnesium alloy WE43 with and without a plasma electrolytic surface coating. Of 14 animals, 6 received magnesium implants with surface modification (coated), 6 without surface modification (uncoated), and 2 titanium implants. Radiological examination of the skull was performed at 1, 4, and 8 weeks post-implantation. After euthanasia at 12 and 24 weeks, X-ray, computed tomography, and microfocus computed tomography analyses and histological and histomorphological examinations of the bone/implant blocks were performed. The results showed a good tolerance of the plate/screw system without wound healing disturbance. In the radiological examination, gas pocket formation was found mainly around the uncoated plates 4 weeks after surgery. The micro-CT and histological analyses showed significantly lower corrosion rates and increased bone density and bone implant contact area around the coated screws compared to the uncoated screws at both endpoints. This study shows promising results for the further development of coated magnesium implants for the osteosynthesis of the facial skeleton.

Journal of Cranio-Maxillofacial Surgery 44 (3), pp 309-317, 2016; DOI: 10.1016/j.jcms.2015.12.009

Calcium phosphates in biomedical applications: materials for the future?

W. Habraken, P. Habibovic, M. Epple, M. Bohner

Our populations are aging. Some experts predict that 30% of hospital beds will soon be occupied by osteoporosis patients. Statistics show that 20% of patients suffering from an osteoporotic hip fracture do not survive the first year after surgery, all this showing that there is a tremendous need for better therapies for diseased and damaged bone. Human bone consists for about 70% of calcium phosphate (CaP) mineral, therefore CaPs are the materials of choice to repair damaged bone. To do this successfully, the process of CaP biomineralization and the interaction of CaPs and biological environment in the body need to be fully understood. First commercial CaP bone graft substitutes were launched 40 years ago, and they are currently often regarded as ‘old biomaterials’ or even as an ‘obsolete’ research topic. Some even talk about ‘stones’. The aim of this manuscript is to highlight the tremendous improvements achieved in CaP materials research in the past 15 years, in particular in the field of biomineralization, as carrier for gene or ion delivery, as biologically active agent, and as bone graft substitute. Besides an outstanding biological performance, CaPs are easily and inexpensively produced, are safe, and can be relatively easily certified for clinical use. As such, CaP materials have won their spurs, but they also offer a great promise for the future.

Materals Today 19(2): 69-87, 2016; DOI: 10.1016/j.mattod.2015.10.008

Influence of Mg-doping, calcium pyrophosphate impurities and cooling rate on the allotropic α↔β-tricalcium phosphate phase transformations

P. M. C. Torres, J. Abrantes, A. Kaushal, S. Pina, N. Döbelin, M. Bohner, J. M. F. Ferreira

Alpha and beta-tricalcium phosphates are allotropic phases which play a very important role as bone graft substitutes, namely in calcium phosphate cements. Despite extensive research efforts, contradictory reports exist on the importance of quenching for maintaining α-TCP purity. The role of calcium pyrophosphate impurities derived from a certain calcium-deficiency, hydroxyapatite impurities derived from calcium excess, and various ionic substitutions on thermal stability of these phases was not yet fully disclosed. The present work reports on the kinetics of α ↔ β-TCP phase transformations of calcium-deficient TCP powders with different Mg-doping extents (0–5 mol%) prepared by precipitation. Mg clearly enhanced the thermal stability of β-TCP. The effect of cooling rate was more complex and interdependent on the Mg content and the heat treatment schedule. High α-TCP contents were retained upon cooling at 5 °C min−1 for Mg ≤ 1 mol% or upon quenching from 1550 °C for Mg contents ≤2 mol%.

Journal of the European Ceramic Society, 36:817-27, 2016; DOI: 10.1016/j.jeurceramsoc.2015.09.037

to top