Topography and roughness

The surface structure and its roughness are decisive for many applications. Thus a quick and accurate measurement of these properties is essential.

In artificial joint replacements for example, the roughness of articulating surfaces strongly influences the wear which is generated in these devices. In the case of dental and orthopaedic implants, the material and its surface structure particularly determine bone ongrowth and therefore its fixation to bone.

At the RMS Foundation, we use a modern, optical 3D-measuring device to measure the surface structure and roughness on many kinds of samples. The S neox from Sensofar allows measurements in different modes: interferometry (both phase shift and white light interferometry), confocal microscopy and focus variation. With interferometry – combined with a piezo drive and an active vibration control – depth-resolutions in the sub-nanometre range are possible. Rough samples can be investigated using confocal microscopy and the contour of a sample can quickly be assessed with focus variation. Very large samples can be analysed too, thanks to a one metre high column for the sensor head.

If the lateral resolution of optical systems is not sufficient, then the topography can be assessed by scanning electron microscopy (SEM). Pictures of a surface are acquired at two different tilting angles and thus the topography can be determined semi-quantitatively. Herewith lateral resolutions down to few nanometres can be achieved.

Besides the surface roughness parameters, the more common profile roughness values can be determined by extracting and evaluating multiple profiles from the measured topographies. Several single topographies are usually stitched together to obtain a larger topography, based on which the roughness values can be determined according to ISO standard 4288. This can be performed for highly polished surfaces as well as for rough samples.

Optical roughness measurement

Device
S neox from Sensofar (Spain)

Measuring modes
• Interferometry (Phase shift and white light interferometry)
• Confocal microscopy
• Focus variation

Resolution
vertical < 0.1 nm with phase shift interferometry
lateral 0.26 µm (50X objectives)

Sample requirements
Solid samples
Dimension < 60 x 60 x 60 cm
Weight < 10 kg
Reflectivity 0.05 % bis 100 %
Height difference < 40 mm
Lateral movement < 114 x 75 mm

Normative references
ISO 4287, ISO 4288, ISO 13565-2 and ISO 25178

Feel free to contact us regarding your specific requirements. We are happy to answer your questions.

Contact for topography and roughness:
Dr. Roman Heuberger
roman.heuberger@rms-foundation.ch

More information as well as our service catalogue can be found on our website.