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bstract

espite 40 years of efforts, researchers have failed to provide calcium phosphate bone graft substitutes performing well enough to replace bone
rafting procedures: their osteogenesis potential is limited, and calcium phosphates are too brittle. However, there is hope to solve the two afore-
entioned problems. First, it is now clear why nacre and bone are very tough despite a high ceramic load. Also, recent studies suggest that calcium
nd phosphate ions can trigger osteoinduction. The present article aims: (i) to review our current knowledge in the field of synthetic bone graft
ubstitutes, (ii) to explain why ceramics and in particular calcium phosphates are still the most promising materials for bone graft substitution, and
iii) finally to describe the strategy to obtain osteoinductive calcium phosphate bone graft substitutes as strong as cortical bone.

 2012 Elsevier Ltd. All rights reserved.
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.  Introduction

Yearly, a few million patients need a bone graft or bone graft
ubstitute. The most frequent causes are bone cysts and tumours,
evisions of orthopaedic implants, spine fusion, and traumatic
ractures.1 Even though bone grafts provide the best biological
esults, there is an increasing fraction of these defects that are
lled with bone graft substitutes.1 This is partly related to the
rawbacks of bone grafting, such as donor site morbidity or
dditional surgical time,2–4 and partly related to the advantages
f bone graft substitutes, such as availability.

Bone graft substitutes may be human-derived (allogenic),
nimal-derived (xenogenic) or synthetic. Since the use of
uman-derived and animal-derived products is ethically ques-
ionable and may lead to complications such as disease
ransmission,5 it is of great interest to study and improve syn-
hetic materials. In fact, it is to be expected that sooner or later,
ynthetic materials will perform better and be cheaper than allo-
enic and xenogenic materials.
Synthetic bone graft substitutes may consist of metals, poly-
ers, and ceramics (Table 1).6 The broad range of materials

sed for this purpose can be explained by the fact that none of

Abbreviations: HA, hydroxyapatite; �-TCP, �-tricalcium phosphate;
-TCP, �-tricalcium phosphate; LBL, layer-by-layer; PMMA, polymethyl
ethacrylate; PVA, poly(vinyl alcohol); Na-MTM, sodium montmorillonite.
∗ Corresponding author. Tel.: +41 326441413; fax: +41 326441176.

E-mail address: marc.bohner@rms-foundation.ch (M. Bohner).
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hese materials unite three essential criteria: (i) they should have
echanical properties as high or better than those of cortical

one (“load-bearing” property), (ii) they should be resorbable
or degradable) to prevent fatigue fractures at long implantation
imes, and (iii) they should promote bone formation (“osteoin-
uctivity”). In other words, despite 40 years of research, the
cientific community is still looking for more adequate bone
raft substitutes. The aim of this manuscript is to recapitu-
ate our knowledge in this field and highlight current research
irections. A special emphasis is set on ceramics, in particular
alcium phosphates, because it is likely that the first resorbable,
trong and osteoinductive bone graft substitute will consist of a
olymer-calcium phosphate composite.

. Resorbable  bone  graft  substitutes

Many resorption mechanisms have been reported in the
ast, including dissolution, cell-mediated dissolution, hydroly-
is, enzymatic decomposition, or corrosion (Table 1).6 However,
he cell-mediated dissolution is probably the most interesting
esorption mechanism for bone graft substitutes because it is
ontrolled by the host cells. In other words, it is not a random
rocess as for polylactide hydrolysis, magnesium corrosion, or
alcium sulphate dissolution. During cell-mediated resorption,

steoclasts dock themselves to the material surface, open their
embrane and secrete hydrochloric acid in a pouch defined

etween the cell and the material7 (Fig. 1). The pH value in this
one drops down to roughly 4.5,7 which is in the case of calcium

http://www.sciencedirect.com/science/journal/09552219
dx.doi.org/10.1016/j.jeurceramsoc.2012.02.028
mailto:marc.bohner@rms-foundation.ch
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Table 1
Resorption mechanism of selected bone graft substitutes (this table is a modified version of Table 1 in Reference6).

Material type Material Resorption mechanism

Ceramic Ceramic glasses (e.g. bioglass) Very limited to complete resorption through partial
dissolution103

Plaster of paris104 (=calcium sulphate hemihydrate,
CSH)

Dissolution

Gypsum104

Dicalcium phosphate dihydrate13,26,105 (=calcium
sulphate dihydrate, CSD)

Dissolution and/or conversion into an apatite

Calcium carbonate13 Dissolution
Dicalcium phosphate (DCP)23,106 Cell-mediated dissolution
Octacalcium phosphate (OCP)107

�-Tricalcium phosphate (�-TCP)20,108

Biphasic calcium phosphate (BCP)109

Precipitated hydroxyapatite crystals13,105

�-Calcium pyrophosphate (�-CPP; �-Ca2P2O7)13

Sintered hydroxyapatite Practically no resorption

Metal Magnesium (alloy) Corrosion110

Iron (alloy) Corrosion111

Tantalum, titanium Practically no resorption

Polymer Polylactides, polyglycolides112 Hydrolysis
Polycaprolactone113

Cellulose Transport to lymph nodes
Hyaluronan Enzymatic decomposition with hyaluronidase114

Fibrin Enzymatic decomposition with plasmin115
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Collagen 

Chitosan

hosphates a value low enough to provoke calcium phosphate
issolution. The ions released during this dissolution are gen-
rally evacuated at the back of the osteoclasts and may either
recipitate there8 or mediate the activity of bone cells.9,10 If the
one graft substitute consists of calcium phosphates, the ions
ay also be used as raw materials for new bone formation.11

Considering the importance of a cell-mediated resorption, it
s important to find methods to determine by which mechanism

 bone graft substitute is resorbed. In general, the cell-mediated
esorption only occurs with inorganic materials. Identifying
hich ones are resorbed by cells can be done using in vitro

ests.12 For that purpose, osteoclasts or osteoclast-like cells are
ultivated on the material and the presence of “dissolution pits”
r etched crystals are indicative of a cell-mediated resorption
Fig. 2). Another potential approach is to look at the material
olubility in physiological fluid13: the material should not be
oluble in physiological fluids at pH 7.4, because spontaneous
ather than osteoclastic dissolution would occur, but should be
oluble at a slightly lower pH value, typically between the pH
alue present at the osteoclast interface (pH 4–5) and pH 7.4.
owever, even though solubility data is a good predictor of the

n vivo behaviour,14,15 the only way to really assess the in vivo
ehaviour is to implant the material.

Since the solubility of an inorganic material is so important
o determine its in vivo fate, many studies have been devoted
o the synthesis of materials with new compositions. In the
970s and 1980s, a strong focus was set on hydroxyapatite

HA; Ca5(PO4)3OH), due to its chemical similarity to bone
ineral.16,17 However, it soon appeared that the resorption rate

f sintered HA was far too low, and might in some cases provoke

c
a
u

Enzymatic decomposition with collagenase
Enzymatic decomposition with lysozyme116,117

omplications due to the mechanical mismatch between HA
nd bone.18 As a result, there has been a continuous evolution
owards the use of more soluble calcium phosphates, from HA to
he so-called “biphasic calcium phosphates” (HA–�-tricalcium
hosphate mixtures (�-TCP; �-Ca3(PO4)2)),19 �-TCP,20 �-
ricalcium phosphate (�-TCP; �-Ca3(PO4)2),21 octacalcium
hosphate (OCP; Ca8H2(PO4)6·5H2O),22 anhydrous dicalcium
hosphate (DCP; CaHPO4)23 and dicalcium phosphate dihy-
rate (DCPD; CaHPO4·2H2O).24 Whereas HA, �-TCP, �-TCP
nd OCP are mostly resorbed by osteoclasts, at least DCPD25,26

ut perhaps also DCP might be resorbed by simple dissolution.
Another approach in controlling calcium phosphate resorp-

ion consists in creating ion-substituted calcium phosphates,27,28

hich do not only have a different solubility than the undoped
aterial, but may provide a therapeutic effect due to the release

f the doping agent (e.g. Sr, Si, Mg, K, CO3
2−) during resorp-

ion. Many ions are indeed known to be potent drugs.29 However,
here is presently no scientific evidence demonstrating that a
oping agent has a direct (positive) effect on the in vivo perfor-
ance of a doped calcium phosphate material, as explained in a

ecent article on Si-substituted HA.30

Apart from chemical approaches, physical approaches can
lso be used to control the resorption rate of inorganic materials
sed as bone graft substitutes.31 The most important and com-
on one is to modify the material architecture.32,33 It is indeed

nown that the presence of “macropores” (in the biomaterials
eld, “macropores” are pores that are large enough to allow

ell and blood vessel invasion; typically larger than 50 �m) can
ccelerate resorption and bone ingrowth.34 Also, Klein et al.35

nderlined in the 1980s the importance of “micropores” (in
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Fig. 1. Histological section of a �-TCP porous scaffold after 6-month implanta-
tion in a baboon (reproduced from 6; courtesy of Prof Olah, University of Berne).
Two enlargements are presented. On top (a), the purple zone corresponds to the
ceramic. The two white arrows show some osteoclasts (“bone resorbing cells”)
present at the ceramic surface. The central “hole” is a ceramic pore (≈0.3 mm
in diameter). An enlargement of the interface ceramic–pore is presented in (b).
The two arrows show again two osteoclasts.
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Fig. 2. surface of a dense �-TCP sample (a) before, and (b) after osteoclast culture (m
grain boundaries of dense �-TCP samples are attacked by 10-day incubation in the c
�-TCP (c). Simultaneously, since the medium is also supersaturated towards all calciu
as evidence by the presence of a ruffled surface (d). The scale bar has a length of 5 �m
eramic Society 32 (2012) 2663–2671 2665

he biomaterials field, “micropores” are pores that are present
etween sintered particles; typically in the range of 0.1–10 �m).
owever, it is still unclear what an ideal architecture should look

ike and whether there is an ideal architecture.31

Beside a change of bone graft substitute architecture, other
hysical aspects are expected to modify their in vivo behaviour.
or example, when a ceramic is dissolved in vitro (Fig. 2)
r in vivo, resorption takes place preferentially at the grain
oundaries.8,36 Thus, a change in grain size should affect its
esorption rate. However, to the best of our knowledge there
s no study yet demonstrating a change of resorption rate
ith a change of grain size (all other factors being the same).

nterestingly, a recent study of Egli et al.37 suggests that the
ay a grain–air interface is formed may affect its reactivity.

ndeed, these authors crushed large �-TCP blocks to produce
.125–0.180 mm particles and tested their hydraulic reactiv-
ty before and after applying at thermal treatment at 500 ◦C:
hile the crystalline composition remained the same, the time

o reach 10% of the reaction increased from a few minutes to
 few hours.38 Also, the activity of osteoclast cells was up-
egulated.37 In other words, a grain–air interface created by
echanical forces appears to be much more reactive than a

rain–air interface obtained by sintering.
Since synthetic bone graft substitutes have poor mechani-

al properties, it is recommended to use them in mechanically
table locations (e.g. fixed with an osteosynthesis plate and
crews). However, local deformations may still occur and pro-
oke surface wear or comminution of the calcium phosphate

one graft substitute. Beside the fact that local deformations
an lead to pseudo-arthrosis, the presence of loose particles
hould be addressed carefully. Some authors have reported

ore details about the experimental procedure can be found elsewhere37). The
ell culture medium despite the fact that the solution is supersaturated towards
m phosphate phases, a thin precipitated layer is observed on the sample surface,

 in (a) and (b), 2 �m in (c) (same enlargement as in a and b), and 1 �m in (d).
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iocompatibility problems due to the release of calcium phos-
hate particles,40 whereas cytocompatibility tests suggest that
ize of these particles might be critical for cytotoxicity.41 How-
ver, there is currently no indication that such loose particles may
igrate and no further indication that they may be harmful. Also,

alcium phosphate particles from nanometer to millimeter scale
ave been used successfully as bone graft substitutes.39 More-
ver, it is known that calcium phosphate resorption leads to the
ormation and accumulation of amorphous calcium phosphate
xtra-cellular deposits between macrophages or multinucleated
iant cells and the ceramic.8

To design the most adequate bone graft substitute, it would
e essential to have an idea about the rate of bone graft resorp-
ion, its mechanism, and the link between graft resorption and
one formation. Unfortunately, very little is known in this field
ecause most in vivo studies are only descriptive. Nevertheless,

 model was proposed a few years ago to determine the effect
f geometry on the cell-mediated resorption rate of a bone graft
ubstitute.32 This model was applied to convex and concave cal-
ium phosphate bone graft substitutes and proved to provide
ood to excellent fits.32,42 However, the results also indicated
hat the resorption rate in sheep may vary fourfold (from 2.5
o 10 �m/week) for the same material just due to a change of

acropore size.42 Interestingly, this value is only slightly lower
han the value of 25 �m/week reported for brushite (=DCPD)
ements in rabbits,43 despite the fact that sheep metabolism is
lower than that of rabbits and DCPD is much more soluble than
-TCP.44

In summary, there are many studies devoted to the resorption
f inorganic bone graft substitutes, but it is still unclear how fast
one graft substitute resorption should be. Whereas HA resorp-
ion appears too slow (in the order of years to dozen of years),
ossibly leading to mechanical instabilities and bone fractures,18

CP resorption might be too fast. Moreover, there is currently
o good understanding of the interplay between material com-
osition, architecture, resorption and bone formation.31 So, it is
ot possible to design the most adequate material for a given
pplication. However, since it is getting easier to design mate-
ials with well-controlled compositions and architectures using
apid-prototyping methods,45 as well as to monitor their in vivo
ate using advanced scanning approaches,46,47 there is hope that
nough understanding will be gained in the next few years to
esign much more efficient inorganic bone graft substitutes.

. Strong  bone  graft  substitutes

As mentioned in Section 1, several materials possessing very
igh mechanical properties have been proposed as bone graft
ubstitutes.48–50 For example, a wollastonite–hydroxyapatite
omposite was reported to have a bending strength of
57 MPa49 and a life-time of 10 years in vivo at a bending
trength of 65 MPa.48 Zberg et al.50 prepared MgZnCa glasses
ith a tensile strength close to 800 MPa. Unfortunately, the

ollastonite–hydroxyapatite composites are not resorbable

nd there are biocompatibility issues related to the resorption
f magnesium alloys.50 In the field of calcium phosphates,
ttempts have been made over the last 40 years to improve

P
S
t
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alcium phosphate mechanical properties with polymers. The
ost famous case is represented by blends of hydroxyapatite

nd polyethylene (“HAPEXTM”).51 More recently, there has
een a trend towards the development of structured composites.
or example, Martinez-Vazquez et al.52 infiltrated a robocast
-TCP scaffold with polycaprolacone or polylactic acid to
btain a compressive strength close to 100 MPa. However,
one of the proposed material has tensile, shear and fatigue
roperties similar to those of cortical bone.53 In other words, all
roposed materials eventually fail and/or do not repair the bone
efect adequately. So other alternatives have to be searched for.

Interestingly, Mother Nature has developed approaches to
roduce strong and tough composite materials using mechan-
cally weak materials such as collagen, chitosan, calcium
arbonate, or calcium phosphates. The solution to this prob-
em lies in a perfect structural and morphological design of the
omposite material.54,55 For example, nacre consists of ceramic
ingle crystals which have a perfectly controlled size and shape
nd which are “glued” together by thin organic layers.54 Indeed,
t is known that below a critical size, ceramics become tolerant
o flaws and hence reach the theoretical strength of a perfect
rystal.55 So, to obtain bone graft substitutes with outstanding
echanical properties, the key is to produce ceramic–polymer

omposites with ceramic platelets or fibres thin enough to reach
he theoretical strength of a perfect crystal and long enough
aspect ratio ≈  20–30) to reinforce efficiently a polymer matrix.
nfortunately, mimicking natural structures remains a challeng-

ng problem due to their complexity, high level of perfection, and
mall scale.

Two main strategies have been used so far: (i) produce a scaf-
old with the first phase and reinforce it with the second phase,
r (ii) produce the composite using a layer-by-layer (LBL) strat-
gy. Applying the first strategy, Hartgerink et al.56 reported that
pecific polymers could self-assemble to form long fibres and
hat oriented hydroxyapatite crystals could precipitate within
nd around these fibres. However, it is unclear how these fibres
ould self-assemble to form large and spatially well-organized

olids and how the ceramic content could be increased to suitable
evels—a too high polymer content is likely to cause biocom-
atibility problems. More recently, Deville et al. proposed a way
o produce oriented pores in aluminium oxide solids via the so-
alled freeze-casting approach.57 By impregnating such porous
tructures with polymethyl methacrylate (PMMA), samples with

 toughness (in energy terms) 300 times larger than that of their
onstituents were obtained.54 More importantly, these materi-
ls presented markedly better mechanical properties than nacre.
umerically, the final product had a yield strength and fracture

oughness of 200 MPa and 30 MPa m1/2 (human bone: yield
trength 100–150 MPa, toughness > 20 MPa m1/258,59). Promis-
ng results have also been obtained with the second strategy
LBL).60,61 For example, Podsiadlo et al.61 dipped a substrate
lternately into a poly(vinyl alcohol) (PVA) solution and into

 sodium montmorillonite (Na-MTM) solution and obtained

VA–Na-MTM composites with a tensile strength of 150 MPa.
imilarly, Bonderer et al. combined dip-coating and spin-coating

o obtain alumina–chitosan composites with a tensile strength
lose to 300 MPa at an elongation of 25%.62 Despite these very
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romising results, none of the proposed materials unite adequate
esorbability and strength. For example, PMMA, alumina and
a-MTM are not resorbable, and PVA readily dissolves in water.
evertheless, it seems that only a small incremental improve-
ent is needed to obtain the first load-bearing resorbable bone

raft substitute.

. Osteoinductive  bone  graft  substitutes

The third important property of a bone graft substitute
s its osteoinduction, i.e. its ability to stimulate bone for-
ation. The standard approach to obtain an osteoinductive

one graft substitute is to combine it with a drug, typically
 growth factor such as BMP-263,64 or BMP-765 but there
re concerns related to their price and safety.66–69 Therefore,
he scientific community is actively looking for alternatives,
uch as bisphosphonates,70 peptides,71 or antibodies.72 Another
pproach consists in combining bone graft substitutes with
atient extracts such as platelet-rich plasma,73 bone marrow,74

r expanded cell extracts,75 but the efficacy of these approaches
s disputed.76–78 In this context, the observation that materi-
ls implanted subcutaneously or in muscles79–81 trigger bone
ormation has received much attention.82,83

Presently, the mechanism(s) involved in this process is/are
nknown82 but general rules can be drawn: more and faster
ctopic bone formation is obtained in samples presenting
oncavities84 and micropores.85,86 Also, “osteoinduction” is
ot limited to calcium phosphates, but has also been reported
or polymers,80 and metals.87 Even though neither polymers
or metals contain calcium phosphates, it is speculated that
alcium phosphates are responsible for polymer and metal
steoinduction.82 Indeed, since the human body is saturated
owards apatite crystals, spontaneous calcium phosphate precip-
tation might occur at polymer and metal surfaces, hence binding
rowth factors and/or modifying the local concentrations of cal-
ium and phosphate ions.

The importance of calcium and phosphate ions for osteoin-
uction is suggested in many studies. Phosphate ions are known
o regulate osteoblast apoptosis,88 osteopontin production,89

nd mineralization rate,90 and calcium ions have been reported
o have a profound effect on osteoblast proliferation10 and
egulation.9 The most striking study underlining the importance
f phosphate ions was presented recently by Habibovic et al.91

hese authors demonstrated that phosphate ions could have an
steogenic effect when slowly released into the thoracic muscles
erector spinae muscle) of CD1 (20–25 g) mice. Contrary to stud-
es devoted to ion-substituted calcium phosphates, these authors
id not simply implant a poorly-soluble calcium phosphate
aterial hoping that during resorption, ions would be released,

ut used a drug delivery approach: fairly-soluble sodium phos-
hate salt crystals were squeezed between two polycaprolactone
ayers. Upon implantation, the salt crystals dissolved and phos-
hate release proceeded by diffusion. Recently, the same group

f authors demonstrated that the release of other ions, such as
obalt, copper, zinc, strontium, fluoride and carbonates, could
rovoke interesting biological reactions.92–94 Considering the
otency of many ions, in particular calcium and phosphate ions,

t
i
m
g
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nd the possibility to apply various strategies to control their
elease rate, there is great hope that the use of an “ionic ther-
peutic” approach might lead to an osteoinductive bone graft
ubstitute.29

.  Discussion

In Section 1, it was mentioned that the scientific community
s still looking for bone graft substitutes uniting the following
hree properties: (i) resorbable, (ii) strong, and (iii) osteoinduc-
ive. From the present review of the literature, it appears that
he goal is much closer than in the past: (i) resorbable materials
xist, (ii) strong materials can be produced, and (iii) calcium
hosphate ceramics and phosphate-loaded polycaprolactones
re osteoinductive. Unfortunately, uniting these three proper-
ies is much more complex than producing materials with one
f the three properties because material resorption, bone for-
ation and mechanical properties are self-dependent. Indeed,

t is known that mechanical loading affect bone graft resorp-
ion and bone formation,95,96 probably in the same way as
one metabolism is affected by loading.97 Also, considering the
otent activity of calcium and phosphate ions9,10,88–90,98 or the
ecrotic effects provoked by certain degradation by-products,99

t is likely that the resorption of a bone graft substitute affects
ts ability to be replaced by new bone. Finally, these reactions
epend on a range of additional parameters such as patient
ge, gender, or social habits (sport, addictions), as well as
mplant location.26 To explain the latter observation, Constantz
t al.26 mentioned factors such as changes of metabolic state,
lood flow rate and implant–bone interface at the implantation
ite.

Considering the excellent biological properties of ceramics,
uch as calcium phosphates, it is most likely that the first
esorbable, osteoinductive and strong synthetic bone graft
ubstitute will contain a large ceramic fraction. As a result,
t is extremely important to control ceramic synthesis and
nderstand what factors may affect its physical, chemical
nd biological properties. Surprisingly, there are still many
eramic-related aspects that remain fragmental or unknown as
emonstrated by three examples. First, despite thousands of
tudies on calcium phosphate and calcium carbonate synthesis,
here is to our knowledge not a single study describing how the
aw materials of nacre or nacre-like structure can be produced.
or that purpose, non-agglomerated platelets with a controlled
hape (e.g. hexagon), size (typically ±  20%) and a large aspect
atio (>10) should be produced. A step in this direction was
aken by Tao et al. who produced hexagonal �-TCP platelets
ith a fairly homogeneous size and an aspect ratio close to

 (Fig. 3).100 The second example is related to ceramic grain
ize. In more details, it is known that the solubility of a ceramic
one graft substitute defines its resorption rate, and are playing

 role during ceramic resorption.8 It is also known that grain
oundaries are generally more soluble than grains. For example,

here is evidence that grain boundaries of �-TCP are dissolved
n cell culture media even though �-TCP is insoluble in such a
edia (Fig. 2). However, there is no study relating composition,

rain size, grain solubility, and in vivo response. The third
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Fig. 3. �-Tricalcium phosphate plates obtained according to the method of Tao
e
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22. Sasano Y, Kamakura S, Nakamura M, Suzuki O, Mizoguchi I, Akita H, et al.
t al.100

nd last example given here is related to the observation made
n Section 4 that a controlled delivery rate of ions such as
hosphates might lead to osteogenesis. This observation implies

 good knowledge of the solubility and dissolution of calcium
hosphates. In fact, the solubility values of calcium phosphates
ave been questioned.101 Moreover, dissolution mechanisms of
alcium phosphates are still poorly understood.102

.  Conclusion

Bone graft substitute research started four decades ago. Thou-
ands of studies have been devoted to the search of THE ideal
one graft substitute, but efforts have failed so far: there is no
aterial that is mechanically and biologically as good as human

one. As a result, the clinical indications of bone graft substi-
utes are still limited. The ideal bone graft substitute should be (i)
esorbable, (ii) osteoinductive, and (iii) mechanically as strong
s cortical bone. The present review of the literature in these
hree research fields reveals that there is a good understanding
f the needs and routes to reach these goals. In other words,
espite the complexity of the problem, one may hope to see the
rst resorbable, osteoinductive, and strong bone graft substitute
oon. Looking at the present state of knowledge, it is highly
ikely that such a material will contain a large ceramic frac-
ion, most likely a calcium phosphate. But since there are many
spects related to calcium phosphate synthesis and properties
hat are unknown, there is a great need for further research. This
ay include the synthesis of calcium phosphate single crystals
ith controlled shape, size and aspect ratio, or an improvement
f our understanding of the link between calcium phosphate
ynthesis, properties and in vivo behaviour.
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