Osteoclastic resorption of dense beta-tricalcium phosphate ceramics B. Le Gars Santoni¹, M. Gallo², T. Douillard², R. Heuberger¹, N. Döbelin¹, C. Stähli¹, S. Dolder³, J Chevalier², W. Hofstetter³, S. Tadier², M. Bohner¹ ¹RMS Foundation, Bioceramics and Biocompatibility Group, Bettlach, Switzerland; *E-mail: bastien.santoni@rms-foundation.ch ²Université Lyon, INSA Lyon, MATEIS, Villeurbanne, France ³University of Bern, Department for BioMedical Research, Bone Biology and Orthopaedic Research Group, Bern, Switzerland Calcium phosphates (CaPs) and particularly β -tricalcium phosphate (Ca₃(PO₄)₂; β -TCP) are well-known to enhance the self-healing abilities of bone [1]. Once implanted, β-TCP grafts are resorbed by osteoclast cells (OC) and replaced by new bone. This study had two aims: 1) find a method to quantify the volume of β-TCP resorbed by OC in vitro and 2) investigate if the β-TCP resorption occurred along preferential grain orientations. #### **Materials and Methods** #### **Results and Discussion** Analysis of oriented needles on resorbed grains permitted to correlate the needle orientations with the direction of the c-axis (lattice parameter) of the β -TCP unit cell [2]. ## Summary White light interferometry is a very potent technique to quantify OC resorption activity and SEM-EBSD measurements demonstrated that β-TCP is resorbed preferentially along the crystallographic c-axis. ### References [1] M. Bohner, Materials Today, 2010;13: 24-30 [2] M. Gallo, B. Le Gars Santoni *et al.*, Acta Biomaterialia (in revision) **Analysis of resorbed grains (EBSD)** ## Acknowledgements Pascal Michel and Olivier Loeffel for laboratory support; Swiss National Science Foundation Funding (grant n°200021_169027) and the European Commission funding of the 7th Framework Program (ITN grant n°289958, Bioceramics for bone repair).