

Incorporation of gadolinium into hydroxyapatite: elucidating the accumulation of Gd in bone after MRI contrast agent administration

• Testing • Research • Consulting

C Stähli¹*, B Le Gars Santoni¹, N Döbelin¹, R Egli², M Bohner¹

¹Bioceramics & Biocompatibility Group, RMS Foundation, Bettlach, Switzerland ²University Institute for Diagnostic, Interventional and Pediatric Radiology, University Hospital Bern - Inselspital, Switzerland *christoph.staehli@rms-foundation.ch

Introduction

Gadolinium-based contrast agents (GBCAs):

Currently the only available contrast agents for magnetic resonance imaging (MRI)

Malignant liver lesion: hepatocellular carcinoma (Courtesy of Dr R Schubert, <u>Radiopaedia.org</u>, rID: 15858)

- ➤ GBCAs (chelators) may partly dissociate and release free Gd³+
- → ongoing safety concerns: GBCAs linked to nephrogenic fibrosis and deposition in the brain [1]
- ightharpoonup Gd³⁺ deposition observed in bone several years after administration (at levels much higher than in the brain) [2] \rightarrow long term storage!
- ➤ But how is Gd³+ incorporated into bone?

Goal of the present work:

➤ To investigate whether Gd³+ precipitated along with Ca²+ and PO₄³- from a supersaturated solution is incorporated into the crystal structure of a bone-like calcium phosphate phase

Method

Precipitation of calcium deficient hydroxyapatite (CDHA)

Results & Discussion

Incoporated into crystals (1% Gd sample):

→ 99.99 mol% of all Gd³+ ions

→ only 96 to 97 mol% of Ca²⁺ and PO₄³⁻ ions

Gd/(Gd+Ca) = 0.97%

Gd/(Gd+Ca) = 1% Rinsing solution

Gd/(Gd+Ca) <0.01%

Chemical and crystallographic parameters of the Gd-containing precipitate

Gd / (Gd+Ca) nominal in mol%	Gd / (Gd+Ca) (ICP-MS) in mol%	Phases detected (XRD)	Amorphous fraction (XRD) in wt%
0%	0%	CDHA	14%
1%	0.97%	CDHA	14%
5%	4.76%	CDHA	19%

The precipitate consisted of phase-pure CDHA with a Gd content close to nominal quantities, and accompanied by an amorphous fraction of <20 wt%

➤ Gd³+ is highly insoluble and was permanently

incorporated into the precipitated crystals

Crystallite size (a) and unit cell dimensions (b) of the CDHA crystal lattice as a function of Gd content. Error bars designate the estimated standard deviation associated with the Rietveld refinement.

- Gd content affects the CDHA crystallite
- ➤ Unit cell dimension A decreases with increasing Gd content → a contracted unit cell is in line with the smaller Gd³⁺ ionic radius compared to Ca²⁺ [4]
- These findings imply that Gd³⁺ was most likely incorporated into the apatite crystal lattice rather than forming a separate GdPO₄ phase

Conclusions

- > Chemical and crystallographic analysis of the precipitate formed from a supersaturated solution of Gd³⁺, Ca²⁺ and PO₄³⁻ provided strong evidence of a Gd-containing apatite crystal structure
- > Thus, Gd³⁺ ions dissociated from their chelators in vivo after GBCA administration may be directly incorporated into the mineral phase of bone during bone formation or remodeling

References

- [1] Grobner, Nephrol Dial Transplant 2006; **21(4)**:1104-8
- [2] Murata et al, Invest Radiol 2016; **51(7)**:447-53
- [3] Bleavins et al, Biol Trace Elem Res 2012; 145(2):257-67
- [4] Shannon, Acta Cryst A 1976; 32(5):751-67

11TH WORLD BIOMATERIALS CONGRESS

11 - 15 December 2020