

SYNTHESIS OF MONETITE PLATELETS FOR COMPOSITE BONE **GRAFT SUBSTITUTES**

B. Le Gars Santoni^{1,2*}, C. Stähli¹, N. Döbelin¹, L. Galea¹, P. Bowen², M. Bohner¹

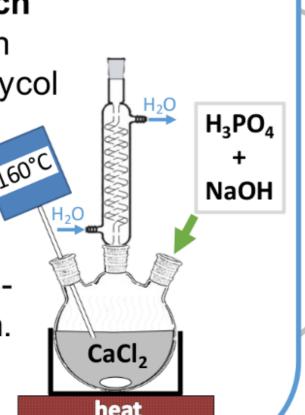
¹RMS Foundation, Skeletal Substitute Group, Bettlach, Switzerland. ²Powder Technology Laboratory (LTP), EPFL, Lausanne, Switzerland. *bastien.santoni@rms-foundation.ch

Motivations

The self-healing ability of bone is only sufficient to repair small defects. For large defects, surgical intervention and implantation of a bone graft may be required. The main challenge for such material is to combine biocompatibility, resorbability and load-bearing properties¹. This could be done by mimicking the nacre structure², but there are two issues: produce the ceramic platelets and organize them into the matrix in an ordered manner.

Aims

The general aim of this project was to improve the synthesis of monetite (DCPA) platelets used as reinforcements in chitosan-monetite composite with²:


- Controlled geometry (parallelepiped)
- Narrow size dispersion,
- High aspect ratio (up to 20),
- No agglomerates

Materials and methods

Monetite Platelets 1. Synthesis in batch

reactor: precipitation from two ethylene glycol reagents, containing respectively CaCl₂ and H₃PO₄; Temperature: maintained at 100°C-170°C during 90 min. **pH:** adjusted with a NaOH solution.

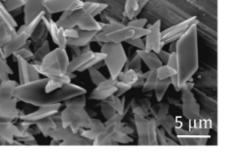
Chitosan

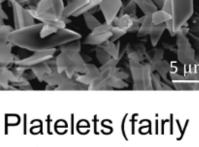
2. Dissolution: Chitosan from crab shells mechanically stirred in 0.1 M acetic acid solution during 24 hours.

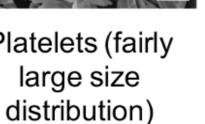
Chitosan-Monetite Composite

- 3. Mixing: Chitosan solution with monetite platelets
- 4. Casting in glass petri dishes moulds
- 5. Degassing: Combination of vacuum and addition of ethanol on the top surface of the mould to accelerate air bubble removal.
- 6. Solvent evaporation: 3 days in a climate chamber at 30°C and 70% RH

Results and discussion

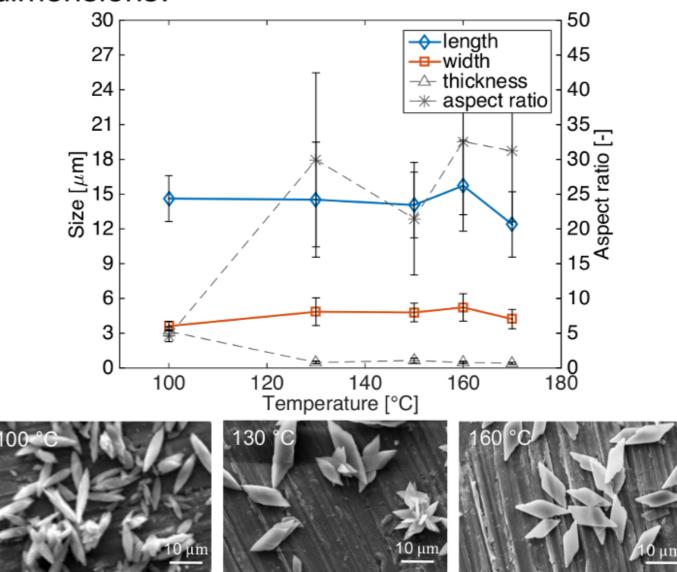

1. Influence of pH


3D clusters


with few

platelets

Acidic

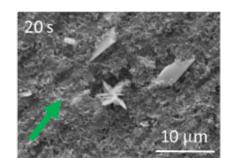

β-TCP and/or Na-P precipitation

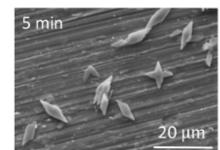
Basic

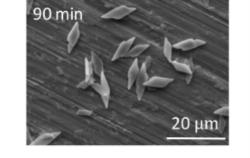
NaOH the The was tuned by concentration in solution. Large amounts of clusters were observed at low pH whereas at high pH presence of other phases was noticed (namely β-TCP). In neutral conditions, parallelepiped platelets with few 3D clusters were obtained.

2. Influence of Temperature

The temperature was found to affect mainly the shape of monetite platelets and less their dimensions.


3D clusters and Thick layered parallelepiped platelets platelets

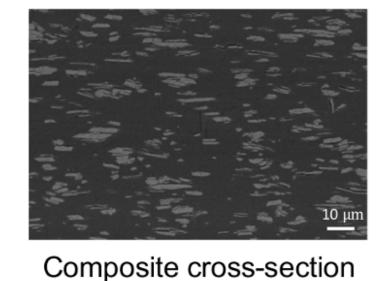

Parallelepiped

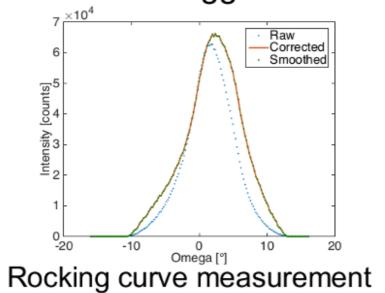

platelets

3. Kinetic Study

At 20s of reaction time, coexistence of an amorphous phase with monetite platelets was observed.

After 5 min, this amorphous phase was completely resorbed, leading the place to monetite platelets.


length


width st aspect ratio

Time [min]

Application

Chitosan-monetite (15 vol%) composite were feasible and revealed a good orientation of the platelets with a mean value of $9.3 \pm 0.7^{\circ}$ and presence of some agglomerates.

Conclusion

Syntheses conducted at 160°C, in neutral conditions, with a Ca/P ratio of 1.5 and a total precursor concentration of 32mM for at least 5 min, appeared as the best different compromise between all the syntheses investigated herein.

References

- Laetitia Galea et al., Biomaterials. 34 (2013) 6388-401.
- ² Laetitia Galea PhD thesis, Techniche Universität Bergakademie Freiberg, 2015.

Acknowledgments

Pascal Michel for all the SEM images and Swiss National Science Foundation (SNF; 200021 _ 13758)