

Development of synthetic synovia for tribological testing

Emely Bortel¹, Jeannine Krieg², Jorge Sague², Jiri Nohava³ & Roman Heuberger^{2,*}

¹TU Hamburg, Germany ²RMS Foundation, Bettlach, Switzerland

³CSM Instruments, Peseux, Switzerland *roman.heuberger@rms-foundation.ch

Introduction

Implants sometimes fail in-vivo although they have been tested successfully in simulators. This is mainly due to the fact that laboratory tests are not performed realistically. One example is the test liquid:

	Synovia	ISO 14242-1, based on bovine serum			
proteins (albumin, IgG)	/	✓			
hyaluronic acid	/	-			
salts	/	(/)			
phospholipids	/	-			
enzymes	/	-			
cells	/	-			

The aim of this study was to develop a synthetic test liquid mimicking synovia but based on commercial pure substances to allow for a high reproducibility among testina laboratories, and this at reasonable costs.

Materials & Methods

Test liquids

	HiSi-Mix	HANCS	HANCS	HA BSA	HA BSA/	HA BSA/
Components			RS	RS	IgG RS	IgG RS PL
NCS (newborn calf serum)	/	/	/			
Deionized water	/	/ .				
HA (hyaluronic acid)		/	V.	/ .	✓.	/ .
RS (Ringer solution)			/	V.	V.	/
BSA (bovine serum albumin	n)			/	/	✓ ,
IgG (immunoglobulin G)					/	V.
PL (phospholipid lecithin)						/

Viscosity (dynamic)

Couette geometry viscometer (MCR 300, Anton Paar, Austria) shear rates 1-1000/s and back

Friction

UHMWPE pins (γ-sterilized, curved) vs. polished CoCrMo discs

in test liquids, n=3 1 N load, ~5 MPa 10 mm reciprocal Device: V. Schmid, FH Bern, Switzerland

UHMWPE pins (γ-sterilized, flat) vs. polished CoCrMo discs

in test liquids, n=3 0.1-3.5 Mpa 20-40 mm/s 2 million cycles

Device: AMTI Ortho-POD

Wear particles

collected during wear experiments scanning electron microscopy (SEM, Zeiss EVO Ma25) laser diffraction (Beckmann Coulter LS 13320)

Results & Discussion

Adding HA to the test liquid led to an increased viscosity (Fig. 1), similar as the synovia [1]. Salts lowered the viscosity by reducing the effect of H-bonds.

The higher viscosity (using HA) led to a change from boundary lubrication to mixed lubrication, as predicted by the Stribeck curve (Fig. 2). Surprisingly, the phospholipid lecithin had no effect on the friction.

Fig. 1: Viscosity, compared to Nuki et al. [1].

Fig. 2: Friction of UHMWPE pins vs. CoCrMo

The obtained wear (Figures 3-4) was in agreement with clinically observed wear, which is in the range of 0.09-7.2·10⁻⁶ mm³/Nm [2].

2×10

Fig. 3: Wear and soaking of the UHMWPE pins.

Fig. 4: Wear factor of the UHMWPE pins.

Wear particles

Round particles, fibrils and agglomerates were found in the used test liquids (Figures 5-6)

Fig. 5: SEM-picture of wear particles

Fig. 6: Size of wear particles in the test liquids

Conclusions

A reproducible test liquid based on hyaluronic acid, the pure proteins BSA & IgG, Ringer solution and the phospholipid lecithin was successfully developed in order to mimic the synovia - in terms of the chemical composition, the viscosity and the tribological behaviour. This at about the same costs as the existing HiSi-Mix.

[1] G. Nuki, J. Ferguson; Rheologica Acta 1971; 10; p.8-14. [2] V. Saikko; Journal of Tribology 2003; 125; p.638-642.

