Osteoclastic resorption of dense beta-tricalcium phosphate ceramics

B. Le Gars Santoni\(^1\), M. Gallo\(^2\), T. Douillard\(^2\), R. Heuberger\(^1\), N. Döbelin\(^1\), C. Stähli\(^1\), S. Dolder\(^3\), J Chevalier\(^2\), W. Hofstetter\(^3\), S. Tadier\(^2\), M. Bohner\(^1\)

\(^1\)RMS Foundation, Bioceramics and Biocompatibility Group, Bettlach, Switzerland; \(^2\)Université Lyon, INSA Lyon, MATEIS, Villeurbanne, France

Introduction

Calcium phosphates (CaPs) and particularly β-tricalcium phosphate (Ca\(\text{3}(\text{PO}_4)_2\)\(β\)-TCP) are well-known to enhance the self-healing abilities of bone [1]. Once implanted, β-TCP grafts are resorbed by osteoclast cells (OC) and replaced by new bone. This study had two aims: 1) find a method to quantify the volume of β-TCP resorbed by OC in vitro and 2) investigate if the β-TCP resorption occurred along preferential grain orientations.

Materials and Methods

1. Synthesis and cylinder fabrication

2. Osteoclasts formation

3. Resorption

4. Quantification of resorbed volume

5. Analysis of resorbed grains (EBSD)

Results and Discussion

Numerous OC resorption tracks were observed microscopically on β-TCP samples. White light interferometry highlighted the increased resorption activity of OC with RANKL concentration: resorbed volume per surface area increased from 0.011 ± 0.003 [μm\(^3\)/μm\(^2\)] (control) to 0.082 ± 0.018 [μm\(^3\)/μm\(^2\)] (5 ng/mL RANKL) and 0.157 ± 0.029 [μm\(^3\)/μm\(^2\)] (20 ng/mL RANKL).

EBSD measurement on β-TCP resorbed by osteoclasts with 5 ng/mL RANKL revealed no preferential grain orientation [2].

Summary

White light interferometry is a very potent technique to quantify OC resorption activity and SEM-EBSD measurements demonstrated that β-TCP is resorbed preferentially along the crystallographic c-axis.

References

Acknowledgements

Pascal Michel and Olivier Loeffel for laboratory support; Swiss National Science Foundation Funding (grant n°200021_169027) and the European Commission funding of the 7th Framework Program (ITN grant n°289958, Bioceramics for bone repair).